Observan la danza estrella-agujero negro que predijo Einstein

Observaciones realizadas con el Very Large Telescope (VLT) han revelado, por primera vez, que la estrella que orbita el agujero negro supermasivo que hay en el centro de la Vía Láctea, se mueve tal y como lo predijo la teoría general de la relatividad de Einstein.

Su órbita tiene forma de rosetón (y no de elipse, como predijo la teoría de la gravedad de Newton). Este resultado tan buscado fue posible gracias a las mediciones, cada vez más precisas, llevadas a cabo a lo largo de casi 30 años, lo que ha permitido a los científicos desbloquear los misterios del gigante que acecha en el corazón de la Vía Láctea.

La Relatividad General de Einstein predice que las órbitas enlazadas de un objeto alrededor de otro no están cerradas, como en la Gravedad Newtoniana, sino que tienen un movimiento de precesión hacia adelante en el plano de movimiento. Este famoso efecto –visto por primera vez en la órbita del planeta Mercurio alrededor del Sol– fue la primera evidencia a favor de la Relatividad General.

Pero 100 años después, los científicos han detectado el mismo efecto en el movimiento de una estrella que orbita la fuente de radio compacta Sagitario A*, en el centro de la Vía Láctea.

“Este avance observacional fortalece la evidencia de que Sagitario A* debe de ser un agujero negro supermasivo de cuatro millones de veces la masa del Sol”, afirma en un comunicado Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE) en Garching (Alemania), y artífice del programa de 30 años de duración que ha llevado a este resultado.

Situado a 26.000 años luz del Sol, Sagitario A* y el denso cúmulo de estrellas que hay a su alrededor, proporcionan un laboratorio único para poner a prueba la física en un régimen de gravedad extremo e inexplorado. Una de estas estrellas, S2, se precipita hacia el agujero negro supermasivo desde una distancia de menos de 20.000 millones de kilómetros (120 veces la distancia entre el Sol y la Tierra), lo que la convierte en una de las estrellas más cercanas que se han encontrado en órbita alrededor del gigante masivo.

En su aproximación más cercana al agujero negro, S2 atraviesa el espacio a casi el 3% de la velocidad de la luz, completando una órbita una vez cada 16 años. “Tras seguir a la estrella en su órbita durante más de dos décadas y media, nuestras exquisitas mediciones detectan, de manera robusta, la precesión Schwarzschild de S2 en su camino alrededor de Sagitario A*”, declara Stefan Gillessen, líder del análisis de las mediciones publicadas este jueves en la revista ‘Astronomy & Astrophysics’.

La mayoría de las estrellas y planetas tienen una órbita no circular y, por lo tanto, se acercan y se alejan del objeto alrededor del cual giran. La órbita de S2 tiene un movimiento de precesión, lo que significa que la ubicación de su punto más cercano al agujero negro supermasivo cambia con cada giro, de modo que la siguiente órbita gira con respecto a la anterior, creando una forma de rosetón. La Relatividad General proporciona una predicción precisa de cuánto cambia su órbita y las últimas mediciones de esta investigación coinciden exactamente con la teoría. Este efecto, conocido como precesión Schwarzschild, no se había medido nunca antes en una estrella alrededor de un agujero negro supermasivo.

El estudio realizado con el VLT, un telescopio del ESO (European Southern Research) también ayuda a los científicos a saber más sobre los alrededores del agujero negro supermasivo del centro de la Vía Láctea. “Debido a que las mediciones de S2 se ajustan tan bien a la Relatividad General, podemos establecer límites estrictos sobre la cantidad de material invisible (como materia oscura distribuida o posibles agujeros negros más pequeños) que hay alrededor de Sagitario A*”, señalan Guy Perrin y Karine Perraut, científicos franceses del proyecto, que añaden que esto “resulta muy interesante para entender la formación y evolución de los agujeros negros supermasivos”.

Este resultado es la culminación de 27 años de observaciones de la estrella S2 utilizando, durante la mayor parte de este tiempo, una flota de instrumentos instalados en el VLT de ESO, ubicado en el desierto de Atacama, en Chile. El número de puntos de datos que marcan la posición y la velocidad de la estrella atestigua la minuciosidad y precisión de esta nueva investigación: el equipo realizó más de 330 mediciones en total utilizando los instrumentos GRAVITY, SINFONI y NACO. Dado que S2 tarda años en orbitar el agujero negro supermasivo, fue crucial seguir a la estrella durante casi tres décadas con el fin de desentrañar las complejidades de su movimiento orbital.

Otros efectos confirmados predichos por Einstein

La investigación fue realizada por un equipo internacional liderado por Frank Eisenhauer, del MPE, con colaboradores de Francia, Portugal, Alemania y ESO. El equipo conforma la colaboración GRAVITY, que lleva el nombre del instrumento que desarrollaron para el Interferómetro VLT, que combina la luz de los cuatro telescopios VLT de 8 metros formando un súpertelescopio (con una resolución equivalente a la de un telescopio de 130 metros de diámetro).

El mismo equipo dio a conocer, en 2018, otro efecto predicho por la Relatividad General: vieron la luz recibida de S2 estirándose a longitudes de onda más largas a medida que la estrella pasaba cerca de Sagitario A*.

“Nuestro resultado anterior ha demostrado que la luz emitida por la estrella experimenta la Relatividad General. Ahora hemos demostrado que la propia estrella sufre los efectos de la Relatividad General”, afirma Paulo García, investigador del Centro de Astrofísica y Gravitación de Portugal y uno de los científicos principales del proyecto GRAVITY.

Con el próximo telescopio de ESO, el Extremely Large Telescope (ELT), el equipo cree que serían capaces de ver muchas estrellas más débiles orbitando aún más cerca del agujero negro supermasivo. “Si tenemos suerte, podríamos captar estrellas lo suficientemente cerca como para que realmente sientan la rotación, el giro, del agujero negro”, declara Andreas Eckart, de la Universidad de Colonia, otro de los científicos principales del proyecto.

Esto significaría que los astrónomos serían capaces de medir las dos cantidades, el giro y la masa, que caracterizan a Sagitario A* y definen el espacio y el tiempo a su alrededor. “Eso sería de nuevo un nivel completamente diferente de probar la relatividad”, concluye Eckart.

Fuente: europapress.es