El editor genético CRISPR explicado para principiantes
¿Qué es CRISPR?
El acrónimo CRISPR es el nombre de unas secuencias repetitivas presentes en el ADN de las bacterias, que funcionan como autovacunas. Contienen el material genético de los virus que han atacado a las bacterias en el pasado, por eso permiten reconocer si se repite la infección y defenderse ante ella cortando el ADN de los invasores.
Los científicos han aprendido a utilizar la herramienta CRISPR fuera de las bacterias para cortar y pegar trozos de material genético en cualquier célula. El poder de estas tijeras moleculares es inmenso. Por eso, fue considerado el mayor avance científico del año 2015. Justamente por ello, sus propias creadoras advierten que debemos controlar su uso.
¿Cómo funciona?
En resumen, CRISPR utiliza unas guías y una proteína (Cas9) para dirigirse a zonas elegidas del ADN y cortar. A partir de ahí, se pueden pegar los extremos cortados e inactivar el gen, o introducir moldes de ADN, lo que permite editar sus ‘letras’ a voluntad.
Esta infografía explica con más detalle su funcionamiento.
“CRISPR es una de las tecnologías más robustas que nunca se han descrito en biología”, comenta Lluís Montoliu, investigador del Centro Nacional de Biotecnología del CSIC y uno de los referentes sobre CRISPR en España. “Además, es sencilla y barata, y no se necesitan equipos especiales para aplicarla”. Las anteriores técnicas de edición genética eran mucho más laboriosas, impredecibles y costosas.
¿Quiénes lo han inventado?
Su función fue predicha por el microbiólogo ilicitano Francis Mojica en el año 2005. En los años siguientes, varios equipos de científicos desentrañaron su mecanismo y, entre 2012 y 2013, los equipos de Jennifer Doudna, Emmanuelle Charpentier y Feng Zhang, entre otros, lo aprovecharon para desarrollar una herramienta sencilla, versátil y potentísima para editar el ADN de cualquier tipo de célula.
¿Cuáles son sus aplicaciones?
Puede aplicarse en casi cualquier situación en que se desee modificar la secuencia de ADN. Está siendo muy útil en investigación básica para generar modelos de enfermedades que antes apenas se podían estudiar, así como para estudiar nuevas dianas y fármacos.
También está permitiendo producir con mayor seguridad plantas transgénicas, lo que lleva a conflictos legales, ya que en realidad no se introduce ningún gen, sino que se modifica uno ya existente. En EE UU, donde no se someten a una regulación especial, ya se venden cultivos editados, como champiñones que se conservan durante más tiempo. La Unión Europea no se ha pronunciado al respecto. “Solamente Suecia ha determinado que los organismos editados con CRISPR no son organismos modificados genéticamente”, matiza Montoliu.
CRISPR permite llevar a cabo también proyectos de impulso genético en los que un gen modificado se hereda con una probabilidad casi del 100%, lo que modifica poblaciones enteras en apenas unas generaciones. Existen ideas de llevarlos a cabo para alterar los mosquitos transmisores de la malaria, ya sea infertilizándolos o haciendo que actúen contra el parásito. “Se habla muy poco de estos experimentos, pero me parecen poderosísimos y peligrosísimos”, avisa Montoliu. Aunque aún no se han iniciado, estos experimentos supondrían romper la selección natural. Además de riesgos ecológicos, podrían usarse con fines de bioterrorismo o de terrorismo industrial.
Pero seguramente, la aplicación más esperada de CRISPR es en el campo de la medicina, ya que es la gran esperanza para hacer realidad la anhelada terapia génica.
¿Qué enfermedades se intentan tratar con CRISPR?
En principio, las investigaciones se dirigen al tratamiento de enfermedades causadas por alteraciones en un solo gen, aunque otras muchas podrían beneficiarse. Pero todavía no hay ninguna terapia terapia génica con CRISPR aprobada y conviene ser cautos con las expectativas generadas.
¿Puede evitar enfermedades o aumentar capacidades?
No es descartable. Existen variantes de un gen —el llamado apoE— que se relacionan con distintas probabilidades de desarrollar la enfermedad de Alzhéimer. Pero la variante más protectora parece incrementar, en contrapartida, el riesgo cardiovascular. Mucho más complicado y lejano aún sería aumentar capacidades como la inteligencia. Apenas se conoce su genética, más allá de que depende de un conglomerado e interacción de numerosos genes. En cualquier caso, según Montoliu, “está lejos de poder justificarse en ambos casos. Conduciría a problemas de eugenesia, asuntos que se sabe cómo pueden comenzar, pero no cómo terminan”.
Pensar en estos términos podría dar al traste con los beneficios reales de la técnica. “Hoy mismo existen millones de personas con enfermedades raras que están expulsadas de los sistemas de salud. Es éticamente irresponsable pensar en embriones, en personas que no existen, antes que en ellas”, explica el investigador.
¿Quiénes serán los primeros beneficiados?
Montoliu tiene claro que las primeras aplicaciones de CRISPR tendrán lugar en adultos y considera “un error tratar de modificar embriones, porque no hay ninguna necesidad ni médica ni biológica para hacerlo. No está justificado ni ética ni técnicamente”. La inmensa mayoría de los errores que pueden corregirse se evitan seleccionando los embriones sanos mediante diagnóstico preimplantacional.
¿Es legal la modificación genética de embriones?
Actualmente, ningún país tiene previsto permitir el nacimiento de niños modificados genéticamente. Sin embargo, existen discrepancias sobre su uso en investigación. El Convenio de Oviedo firmado en 1997 lo prohibía, pero “países como China, Japón, el Reino Unido y EE UU no lo firmaron”, detalla Montoliu. En España no está permitido. El investigador reconoce que es difícil poner puertas al campo, pero avisa de que “hacen falta unas normas que debemos darnos entre todos”. Para ello, deberían intensificarse reuniones de comités éticos internacionales donde “no solo hay científicos, también personas de muchos otros ámbitos de la sociedad”.
Ya se puede modificar ARN, en lugar de ADN. ¿Qué significa?
El ADN contiene la información para fabricar proteínas, pero para ello debe transcribirse primero en forma de ARN. El equipo de Feng Zhang –uno de los impulsores de la técnica CRISPR– ha conseguido modificar de forma bastante fiable una de las letras del ARN sin necesidad de producir un corte. Esto abre nuevas puertas, ya que los cambios no serían permanentes como en el caso del ADN. “Disminuiría los conflictos éticos, pero, sobre todo, permitiría hacer tratamientos temporales y reversibles”, asegura Montoliu. “Aunque aún está por ver su fiabilidad exacta, podría ser una revolución”.
Hay una lucha por la patente entre las instituciones donde se desarrolló la técnica. ¿Está frenando esta contienda las investigaciones?
“Indudablemente”, afirma Montoliu. “La inseguridad jurídica está dificultando el clima necesario para que las empresas asuman y financien el riesgo que supone una investigación de este tipo”. Al menos, la investigación más básica y académica puede continuar sin problemas, ya que la patente solo actúa si es con fines comerciales.
¿Están justificadas las esperanzas sobre CRISPR?
“Sí”, asegura Montoliu. “No voy a decir que pueda usarse de aquí a cinco años, pero la investigación avanza muy rápidamente”. Aun así, alerta de los riesgos: “Todavía no tenemos el control necesario sobre ella para utilizarla en la clínica, necesitamos que sea suficientemente eficaz y segura. Si nos precipitamos y surgen problemas, puede aparecer un rechazo en la sociedad que nos impida desarrollarla”.
Fuente: SINC