Durante años se había creído que la clave de la durabilidad del hormigón romano se basaba en una ceniza volcánica. Sin embargo, un nuevo estudia apunta a otro ingrediente de su composición
Un equipo de científicos ha examinado el hormigón que usaban los antiguos romanos y cree haber dado con clave para que sus acueductos, edificios y puertos hayan aguantado en pie cientos de años: la cal viva.
Los investigadores llevan décadas intentando descifrar el secreto de ese antiguo material de construcción ultraduradero, sobre todo en estructuras que soportaban condiciones especialmente duras, como muelles, alcantarillas y diques, o las construidas en lugares sísmicamente activos.
Un nuevo estudio que publica Science Advances firmado por investigadores del Instituto Tecnológico de Massachusetts (MIT), la Universidad de Harvard y laboratorios de Italia y Suiza ha descubriendo antiguas estrategias de fabricación de hormigón que incorporaban varias funcionalidades clave.
Durante años, se había creído que la clave de la durabilidad de ese hormigón se basaba en un ingrediente, el material puzolánico, una ceniza volcánica de la zona de Pozzuoli, en la bahía de Nápoles (Italia), a la que se referían los relatos de arquitectos e historiadores de la época.
Sin embargo, esas muestras antiguas también contienen pequeños y distintivos rasgos de minerales blancos brillantes a escala milimétrica, que desde hace tiempo se reconocen como un componente omnipresente de los hormigones romanos.
Estos trozos blancos, a menudo denominados «clastos de cal», proceden de la cal, otro componente clave de la antigua mezcla de hormigón.
Dichos restos hasta ahora se habían considerado una mera evidencia de mezclas descuidadas o materias primas de mala calidad, explica el MIT en un comunicado.
Sin embargo, el nuevo estudio sugiere que esos diminutos clastos de cal le dieron al hormigón una capacidad de autorreparación hasta ahora desconocida.
Uno de los firmantes de la investigación Admir Masic, del MIT, destacó que si «los romanos pusieron tanto empeño en fabricar un material de construcción excepcional, ¿por qué iban a poner tan poco empeño en garantizar la producción de un producto final bien mezclado?», por eso creía que tenía que haber algún motivo.
Tras una caracterización más detallada de los clastos calcáreos, utilizando técnicas de imagen multiescala de alta resolución y de mapeo químico, los investigadores obtuvieron nuevos conocimientos sobre la funcionalidad potencial de estos clastos calcáreos.
Históricamente, se había supuesto que cuando la cal se incorporaba al hormigón romano, primero se combinaba con agua para formar un material pastoso altamente reactivo en un proceso conocido como apagado, pero ese proceso, por sí solo, no podía explicar la presencia de los clastos de cal.
Por eso, el equipo se preguntó si era posible que los romanos hubieran usado cal viva, que es una forma más reactiva de ese material. Estudiando muestras de hormigón antiguo determinaron que las partículas blancas estaban formadas, efectivamente, por diversas formas de carbonato cálcico.
La importancia de las altas temperaturas
Un examen espectroscópico proporcionó indicios de que se habían formado a temperaturas extremas, como cabría esperar de la reacción exotérmica producida por el uso de cal viva en lugar de, o además de, la cal apagada en la mezcla.
La mezcla en caliente, según el equipo, fue en realidad «la clave de la naturaleza superdurable» del hormigón debido a dos factores explicó Masic.
Por una parte, cuando el hormigón en su conjunto se calienta a altas temperaturas, permite una química que no sería posible si solo se utilizara cal apagada, produciendo compuestos asociados a esas temperaturas que de otro modo no se formarían.
Además, el aumento de temperatura reduce significativamente los tiempos de curado y fraguado, ya que todas las reacciones se aceleran, lo que permite una construcción mucho más rápida.
El equipo decidió probar que esa era el mecanismo responsable de la durabilidad del hormigón romano, para lo que produjo muestras de mezclado en caliente que incorporaban formulaciones antiguas y modernas, las agrietó e hizo correr agua por ellas.
Tras dos semanas, esas aberturas se habían curado por completo y el agua ya no podía fluir, sin embargo, un trozo idéntico de hormigón fabricado sin cal viva nunca se curó y el agua siguió fluyendo por la muestra.
Masic consideró que «es emocionante pensar en cómo estas fórmulas de hormigón más duraderas podrían ampliar no solo la vida útil de estos materiales, sino también cómo podría mejorar la durabilidad de las fórmulas de hormigón impresas en 3D».
Fuente: elmundo.es